This result makes sense assuming you are evaluating on the training data. RandomTree builds an unpruned tree.

Cheers,
Eibe

On Sat, Sep 28, 2019 at 9:20 PM JC <jromeroaj@alumnos.unex.es> wrote:
Thank you again Eibe.

I doing this:

/               RandomCommittee rct = new RandomCommittee();
                AllFilter af = new AllFilter();
                FilteredClassifier cls = new FilteredClassifier();
                cls.setFilter(af);
                cls.setClassifier(new RandomTree());
                rct.setClassifier(cls);/

and then I run the code but all I got is this:

/** Random Tree Evaluation with Datasets **

Correctly Classified Instances         801      100%
Incorrectly Classified Instances          0       0%
Kappa statistic                                    1     
Mean absolute error                           0     
Root mean squared error                   0     
Relative absolute error                       0%
Root relative squared error                0%
Total Number of Instances                 801     
/

How can be possible this? Am I doing something wrong?



--
Sent from: https://weka.8497.n7.nabble.com/
_______________________________________________
Wekalist mailing list -- wekalist@list.waikato.ac.nz
Send posts to: To unsubscribe send an email to wekalist-leave@list.waikato.ac.nz
To subscribe, unsubscribe, etc., visit
https://list.waikato.ac.nz/postorius/lists/wekalist.list.waikato.ac.nz
List etiquette: http://www.cs.waikato.ac.nz/~ml/weka/mailinglist_etiquette.html